Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
FEBS J ; 289(14): 4240-4250, 2022 07.
Article in English | MEDLINE | ID: covidwho-1666305

ABSTRACT

The SARS-CoV-2 pandemic is maintained by the emergence of successive variants, highlighting the flexibility of the protein sequences of the virus. We show that experimentally determined intrinsically disordered regions (IDRs) are abundant in the SARS-CoV-2 viral proteins, making up to 28% of disorder content for the S1 subunit of spike and up to 51% for the nucleoprotein, with the vast majority of mutations occurring in the 13 major variants mapped to these IDRs. Strikingly, antigenic sites are enriched in IDRs, in the receptor-binding domain (RBD) and in the N-terminal domain (NTD), suggesting a key role of structural flexibility in the antigenicity of the SARS-CoV-2 protein surface. Mutations occurring in the S1 subunit and nucleoprotein (N) IDRs are critical for immune evasion and antibody escape, suggesting potential additional implications for vaccines and monoclonal therapeutic strategies. Overall, this suggests the presence of variable regions on S1 and N protein surfaces, which confer sequence and antigenic flexibility to the virus without altering its protein functions.


Subject(s)
COVID-19 , Intrinsically Disordered Proteins , Humans , Immune Evasion/genetics , Intrinsically Disordered Proteins/genetics , Nucleoproteins , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
2.
J Clin Microbiol ; 60(1): e0169821, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1511413

ABSTRACT

This first pilot trial on external quality assessment (EQA) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whole-genome sequencing, initiated by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Genomic and Molecular Diagnostics (ESGMD) and the Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing. Ten samples with various viral loads were sent out to 15 clinical laboratories that had free choice of sequencing methods and bioinformatic analyses. The key aspects on which the individual centers were compared were the identification of (i) single nucleotide polymorphisms (SNPs) and indels, (ii) Pango lineages, and (iii) clusters between samples. The participating laboratories used a wide array of methods and analysis pipelines. Most were able to generate whole genomes for all samples. Genomes were sequenced to various depths (up to a 100-fold difference across centers). There was a very good consensus regarding the majority of reporting criteria, but there were a few discrepancies in lineage and cluster assignments. Additionally, there were inconsistencies in variant calling. The main reasons for discrepancies were missing data, bioinformatic choices, and interpretation of data. The pilot EQA was overall a success. It was able to show the high quality of participating laboratories and provide valuable feedback in cases where problems occurred, thereby improving the sequencing setup of laboratories. A larger follow-up EQA should, however, improve on defining the variables and format of the report. Additionally, contamination and/or minority variants should be a further aspect of assessment.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Laboratories , Laboratories, Clinical , Pilot Projects
3.
Viruses ; 12(12)2020 12 06.
Article in English | MEDLINE | ID: covidwho-967147

ABSTRACT

The International Virus Bioinformatics Meeting 2020 was originally planned to take place in Bern, Switzerland, in March 2020. However, the COVID-19 pandemic put a spoke in the wheel of almost all conferences to be held in 2020. After moving the conference to 8-9 October 2020, we got hit by the second wave and finally decided at short notice to go fully online. On the other hand, the pandemic has made us even more aware of the importance of accelerating research in viral bioinformatics. Advances in bioinformatics have led to improved approaches to investigate viral infections and outbreaks. The International Virus Bioinformatics Meeting 2020 has attracted approximately 120 experts in virology and bioinformatics from all over the world to join the two-day virtual meeting. Despite concerns being raised that virtual meetings lack possibilities for face-to-face discussion, the participants from this small community created a highly interactive scientific environment, engaging in lively and inspiring discussions and suggesting new research directions and questions. The meeting featured five invited and twelve contributed talks, on the four main topics: (1) proteome and RNAome of RNA viruses, (2) viral metagenomics and ecology, (3) virus evolution and classification and (4) viral infections and immunology. Further, the meeting featured 20 oral poster presentations, all of which focused on specific areas of virus bioinformatics. This report summarizes the main research findings and highlights presented at the meeting.


Subject(s)
Computational Biology , RNA Viruses/genetics , Virology , COVID-19 , Congresses as Topic , Evolution, Molecular , Genome, Viral , Humans , Metagenomics , RNA Viruses/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL